

Scientific results for Marseille

Damien Piga, Anaïs Detournay, Dalia Salameh, Michaël Parra, Alexandre Armengaud, Dominique Robin, Nicolas Marchand, Magali Deveze

Final conference - Venice, 8th November 2012

- 1rst harbour in France
- 1rst harbour of the Mediterranean Sea
- 3rd harbour in the world for Crude oil and oil products

eel Industry

Refinery

Marseille

2^{nde} city in France ~ 1.6 million of inhabitants

Refinery and petro chemical industry

Industrial area (various activities)

Refinery

Refinery and petro chemical industry

Marseil Industrial area (various activities)

Sampling site : « 5 avenues » From the 25th of January to the 2nd of March 2011

Image Google Earth

Environnement-

Laboratoire Chimie

Source apportionment methods :

- CMB analysis (Aix-Marseille Univ.)

• A complex method, developed in *ElHaddad et al., 2010*

Source profiles :						
Industrial sources :	Non Industrial profiles :					
 Coke production Weitkamp et al., 2005 Steel facilities, mean of averall processes Tsai et al., 2007 Shipping main engines Agrawal et al., 2008 	 Vehicular emissions ElHaddad et al., 2009 Diesel heavy duty trucks Rogge et al., 1993 Biomass burning Fine et al., 2002 Natural gas combustion Rogge et al., 1993 Vegetative detritus Rogge et al., 1993 					
Additional Sources :						
<u>Sea salt</u>						
[sea salt] = [Cl] + [Na ⁺] * 1.47		Putaud et al, 2004				
Crustal Dust						
[Crustal Dust] = 2.20[Al] +2.49[Si] +1.63[Ca] +2.42[Fe] +1.94[Ti]		Malm et al., 1994				
Selected markers :						
<u>Specific markers :</u> - Vehicular emissions : Elemental carbon + 3 hopanes (i.e.17α(H),21β(H)-norhopane, 17α(H),21β(H)-hopane, and 22S,17α(H),21βH)-homohopane - Biomass burning : levoglucosan						
Additional markers : - Four PAH (i.e. benzo[b,k]fluoranthene, benzo[e]pyrene, indeno[1,2,3-c,d]pyrene and benzo[g,h,i]perylene) markers, for several kind of industrial processes - C27, C32 n-alkanes - Three metals (i.e. V, Ni and Pb)						

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund Aix+Marseille

Cnr

Laboratoire Chimie

Source apportionment methods :

- PMF analysis

Partners involved	IDAEA-CSIC	Univ Genoa and IDAEA- CSIC on behalf of ARPA veneto	UOWM	Univ Genoa
	(Barcelona)	(Venezia)	(Thassaloniki)	(Genova)
Species included	22 Variables	21 variables	37 variables	15 Variables
	Ca, K, Na, Mg, Fe, Mn, V, Ni, Cu, Zn, Sn, Sb, Pb, $SO_4^{2^-}$, NO_3^- , NH_4^+ , EC and Five Oc fractions (OC1, OC2, OC3, OC4 and Pyrolitic C)	Ca, Na, Mg, Fe, V, Ni, Cu, Zn, Sn, Sb, Pb, SO4 ²⁻ , NO ³⁻ , NH4 ⁺ , EC, OC, E-Alk, O-Alk, PAH, HOPA, DHAA	8PAH, SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻ , Al, Ca, K, Na, Mg, Fe, Mn, Ti, P, V, Cr, Ni, Cu, Zn, As, Rb, Sr, Sb, Cd, Sn, Pb, Li, Sb, La, OC and EC	Al, Si, P, K, Ca, V, Fe, Ni, Cu, Zn, SO4 ²⁻ , NH4 ⁺ , NO3 ⁻ , OC and EC
	=> Metals, ions, EC and OC fractions	=> Organic compounds, métals, ions, EC and OC	=> Organic compounds, métals, ions, EC and OC	=> Metals, ions, EC and OC
Number of factor / sources	7	7	6	5

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund Laboratoire Chimie

Environnement-

Source apportionment methods :

- Intercomparaison : constitution of 5 source groups

	Source and Source types derived from each source apportionment analysis					
Source group	Aix Marseille Univ	IDAEA-CSIC	Univ Genoa and IDAEA- CSIC on behalf of ARPA veneto	UOWM	Univ Genoa	
Road	Vehicular	Vehicular exhaust ; Road dust	Vehicular exhaust + sea spray ; Road dust	Road dust	Road	
Residential	Biomass burning ; Vegetative detritus (incomplete combustion of wax alkanes) ; Natural gas combustion	Biomass burning	Residential	Residential combustion	-	
Primary natural	Sea salt ; Crustal dust	Aged sea spray ; Mineral/industrial	Dust	Natural sea salt	Dust	
Industrial and Shipping	Coke production ; HFO combustion/Shipping ; Steel manufacturing	Fuel Oil Combustion	Industrial / marine	Marine-Shipping emissions / Industry	Industrial / Marine	
Secondary	Secondary ammonium, nitrate and sulfate ; Unexplained OM	Secondary aerosols	Secondary 1 ; Secondary 2	Secondary aerosols	Secondary 1 ; Secondary 2	

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Environnement-

Intercomparaison results :

Transport Residential Primary Natural Industrial / Marine Secondary aerosols

Laboratoire Chimie

Intercomparaison results :

- Residential and transport emission

- Residential sources :
 - Mostly related to wood burning emissions, other negligible
 - Source mainly characterized by organic markers
- Road emission sources
 - Both exhaust emissions and road dusts
 - Factor driven by OC and EC (exhaust emission) and metals (road dust)

The use of organic marker allows a better distinction between those two sources

Intercomparaison results :

- Industrial / marine and Secondary aerosols
- Important discrepancies observed about industrial factor
- Comparable results for these two factor sum

Difficulty to distinguish those two sources

cional Development Fund

Laboratoire Chimie Aix*Marseille Environnement-Intercomparaison results : Analysis of a same data base with PMF and CMB 100 90 47 % 34% 80 **Overall good** Secondary 70 aerosols accordance of results Industrial / 2 % 14 % 60 Marine % of PM 2.5 Primary Natural 50 5 % 14 % Residential **Discrimination** 40 Transport between secondary 30 aerosols and industrial / 28 % 20 % 20 marine source ? 18 % 18 % 10

0

CMB

analysis

PMF

analysis

Projet cofinance par le Fonds Européen de Développament Régional Project co-financed by the European Regional Development Fund

Marseille

Long monitoring campaign, from July 20th 2011 to July the 20th 2012

> Urban background sampling site « Cinq Avenues »

1 11 11 11 1

SNCM

Eastern harbour sampling site, « Gare de la Major »

Long term monitoring campaign

- Principle and methodology

Two measurement sites elected

- Urban background site « 5 avenues » :
 - Precise study of particulate matter in Marseille down town
- Eastern harbor measurement site « Gare de la Major »
 - Characterization of incoming air masses, before their arrival in Marseille
 - Measure of ship emissions to characterize more precisely those emissions

Implementation :

- From July 2011 to July 2012 (one full year)
 - Seasonal evolution of sources
 - Constitution of a wide database, which would be analyzed trough both PMF and CMB
- Collection of PM2.5 samples, analyzed according to their own interest

Long term monitoring campaign

- First results : CMB from 08/2011 to 02/2012 - 5 avenues site

Important seasonal evolution of sources

Importance of biomass burning source in winter Shallow impact of Industrial and marine sources

Sood accordance with intercomparison campaign's results
Several interesting events, that should be studied more thoroughly

Source apportionment by CTMs - Method

Modeling domain

From Europe to regional scale

Source apportionment

- CHIMERE ⇒ zero-out modeling
 - Used since several years
 - Operational forecasting

- CAMx ⇒ tracer approach (PSAT)
 - Time saving
 - Mass consistency
 - Fully traceable

⇒ Good agreement between CTMs

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Source apportionment by CTMs - Results

Daily PM₁₀ – Urban background site – Winter period

⇒ Temporal source apportionment

Projet cofinance par le Fonds Europeen de Développement Régional Project co-financed by the European Regional Development Fund

Source apportionment by CTMs - Results

Monthly PM₁₀ – Winter period

⇒ Spatial source apportionment

Proiet cofinance par le Fonds Européen de Développement Régional

Source apportionment by CTMs - Validation

Future scenarios – List for Marseille

Scenario 0: Base case run

⇒ emission 2007

Scenario 1: Base case future run

⇒ emission 2025

Scenario 2: Common Future emission mitigation

⇒ emission 2025 + low fuel sulfur content

Scenario 3: Individual future emission mitigation

⇒ emission 2025 + OPS solution

Scenario 4: Individual future emission mitigation

⇒ emission 2025 + new cruise terminal

Scenario 5: Individual future emission mitigation (in progress) ⇒ emission 2025 + LNG for passenger ships

rojet cofinance par le Fonds uropéen de Développement Régional roject co-financed by the European ecional Development Fund

Future scenarios – Method

Scenario 3: Individual future emission mitigation ⇒ OPS solution

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Future scenarios – Method

Scenario 4: Individual future emission mitigation \Rightarrow new cruise terminal

Projet cofinancé par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Future scenarios – Method

2 simulation tools:

≻<u>CHIMERE</u>

- chemical model
- Iarge scale
- 3x3km spatial resolution
- \Rightarrow Scenario 0, 1 and 2

➢ADMS URBAN

- no particles chemistry
- Iocal scale
- spatial resolution ≈ 10m
- ⇒ Scenario 1, 3, 4, 5

Européen de Développement Régional Project co-financed by the European sional Development Fund

Scenario 0: **Base case run** ⇒ emission 2007

 \rightarrow Regional PM₁₀ concentration using CHIMERE

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Scenario 1: Base case future run ⇒ emission 2025

 \rightarrow Difference between future and present for PM10 concentration

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Scenario 3: Common Future emission mitigation ⇒ low fuel sulfur content

 \rightarrow Difference between future and mitigation action for PM_{2.5} concentration

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Recional Development Fund

Amelioration

Degradation

3

- 2

- 1

- 0

- -1

-2

-3

-4

-5

Scenario 1: Base case future run ⇒ emission 2025

 \rightarrow High resolution for NO2 concentration using ADMS Urban

tojet cofinancé par le Fonds Européen de Développement Régional Project co-financed by the European cional Development Fund

Scenario 3: Individual future emission mitigation \Rightarrow OPS solution

 \rightarrow Contribution for NO2 concentration of ships involved in the OPS scenario

rojet cofinancé par le Fonds Européen de Développement Régional sional Development Fund

Scenario 3: Individual future emission mitigation ⇒ OPS solution

 \rightarrow Difference between future and mitigation action for NO₂ concentration

Projet cofinancé par le Fonds Européen de Développement Régional Project co-financed by the European Regional Development Fund

Scenario 3: Individual future emission mitigation \Rightarrow OPS solution

 \rightarrow Difference between future and mitigation action for PM10 concentration

trojet cofinancé par le Fonds Européen de Développement Régional Development Fund

Scenario 4: Individual future emission mitigation \Rightarrow new cruise terminal

 \rightarrow NO2 concentration using ADMS Urban for the new cruise terminal

QUALITÉ DE L'AIR

29

Scenario 4: Individual future emission mitigation ⇒ new cruise terminal

 \rightarrow Difference between future and mitigation action for NO₂ concentration

Projet cofinancé par le Fonds Européen de Développement Régional Project co-financed by the European Recional Development Fund

Scenario 4: Individual future emission mitigation \Rightarrow new cruise terminal

 \rightarrow Difference between future and mitigation action for PM10 concentration

rojet cofinancé par le Fonds Européen de Développement Régional cional Development Fund

-0.4

-0.6

-0.8

-1

0.8

Conclusion

Source apportionment by receptor model

- Sharing of methodologies
- Improvement of source profiles
- Analysis of the long term monitoring campaign in progress

Source apportionment by chemical transport model

- Development of a new tool to apportion local sources with CHIMERE
- Set up of the new model CAMx
- Validation of source apportionment results

⇒ Significant contribution of biomass burning to PM concentration

Conclusion

Future scenario and mitigation actions

- ➢ Base case future run (2025) :
 - PM10 increase by 1µg/m3
- Reduction of sulfur content
 - Maximal reduction for PM concentration by 5 %
- OPS solution
 - Maximal reduction for NO2 concentration by 5 µg/m3.
 - PM10 reduction below than 1 µg/m3
- New cruise terminal
 - Significant improvement close to the port area for NO2
 - PM10 decrease by 1µg/m3

Projet cofinance par le Fonds Européen de Développement Régional Project co-financed by the European Recional Development Fund

